88 research outputs found

    Simulation numérique du couplage électrique, thermique et mécanique lors du frittage « flash » de matériaux céramiques et métalliques

    No full text
    Le procédé de frittage « flash » ou SPS (Spark Plasma Sintering) est utilisé comme procédé de consolidation de matériaux céramiques ou métalliques. Une simulation numérique des couplages électrique, thermique et mécanique lors du traitement « SPS » a été menée. Les équations caractéristiques de la conservation de l'énergie, du potentiel électrique et les équations d'équilibre, pour le comportement mécanique, sont résolues simultanément et des couplages forts, en terme de température, sur les coefficients de conductivité thermique et de résistivité électrique sont pris en compte. Les exemples d'application concernent des échantillons céramiques (alumine) ou métalliques (cuivre)

    Thermal barrier coating modifications implementing in situ laser remelting with a diode laser

    No full text
    Les barrières thermiques, réalisées par projection thermique à la torche à plasma d'arc soufflé et constituées d'une couche céramique de zircone stabilisée notamment à l'yttrine (ZrO2-Y2O3), sont largement utilisées pour protéger les composants des turbinYttria partially stabilized zirconia thermal barrier coatings (TBCs) are nowadays widely used to protect components of aero gas turbines against degradation at high temperature, corrosion and oxidation. However, these coatings degrade in service conditio

    Thermal barrier coating modifications implementing in situ laser remelting with a diode laser

    No full text
    Les barrières thermiques, réalisées par projection thermique à la torche à plasma d'arc soufflé et constituées d'une couche céramique de zircone stabilisée notamment à l'yttrine (ZrO2-Y2O3), sont largement utilisées pour protéger les composants des turbines à gaz aéronautiques des dégradations à haute température, de la corrosion et de l'oxydation. Toutefois, ces revêtements se dégradent lors des cycles de fonctionnement.Aussi, il existe une véritable difficulté technologique pour élaborer à un coût modéré des barrières thermiques présentant à la fois de faibles caractéristiques de conductivité et une bonne tenue en service. L'originalité de cette étude est donc de modifier les propriétés de barrières thermiques à base de zircone partiellement stabilisée par un procédé de refusion laser in situ couplant la projection thermique à la refusion par irradiation laser.Au final, le procédé de refusion in situ a permis d'architecturer différemment les dépôts barrières thermiques, et notamment : (i) de substituer à la microstructure lamellaire des dépôts projetés une microstructure dendritique colonnaire plus adaptée aux sollicitations thermomécaniques (augmentation de la résistance aux chocs isothermiques pouvant aller jusqu'au doublement du nombre de cycles) ; (ii) d'obtenir une architecture poreuse moins sensible au frittage, d'où une meilleure conservation des propriétés thermiques et mécaniques du dépôt lors de maintiens à hautes températures ; (iii) d'améliorer les propriétés d'isolation thermique de la barrière thermique, notamment en réduisant la conductivité thermique du dépôt d'environ 30 % ; (iv) de diminuer drastiquement sa perméabilité pour lutter contre l'oxydation et la corrosion ; (v) d'obtenir une phase tétragonale métastable plus stable lors de chocs thermiques ; (vi) de conserver les propriétés élastiques du dépôt (module de Young intrinsèque et apparent).Yttria partially stabilized zirconia thermal barrier coatings (TBCs) are nowadays widely used to protect components of aero gas turbines against degradation at high temperature, corrosion and oxidation. However, these coatings degrade in service conditions.Therefore, to manufacture TBC which present both low thermal conductivity and high life-time is a real challenge. Engineering the coating architecture by an adapted process is a prerequise to modify TBC characteristics. In this study, laser remelting was combined to thermal spraying in order to modify the TBC properties. The purpose was to adapt TBC characteristics during their manufacturing process, without adding one or even more additional steps.In situ laser treatment (i) changes structure from lamellar to dendritic columnar; (ii) generates a pore architecture less sensitive to sintering, inducing then a best conservation of the thermal and mechanical properties during thermal treatments at high temperatures; (iii) improves the thermal insulation properties of the TBC by decreasing its thermal conductivity of about 30 %; (iv) decreases its permeability in order to diminish oxidation and corrosion phenomena; (v) increases the resistance to isothermal shocks (with the possibility to double the number of cycles); (vi) conducts to a metastable tetragonal phase more stable during thermal shocks; (vii) without modifying elastic response of the deposit

    Améliorations de revêtements barrières thermiques par un procédé de refusion laser in situ utilisant un laser à diodes

    No full text
    Les barrières thermiques, réalisées par projection thermique à la torche à plasma d’arc soufflé et constituées d’une couche céramique de zircone stabilisée notamment à l'yttrine (ZrO2-Y2O3), sont largement utilisées pour protéger les composants des turbines à gaz aéronautiques des dégradations à haute température, de la corrosion et de l’oxydation. Toutefois, ces revêtements se dégradent lors des cycles de fonctionnement. Aussi, il existe une véritable difficulté technologique pour élaborer à un coût modéré des barrières thermiques présentant à la fois de faibles caractéristiques de conductivité et une bonne tenue en service. L’originalité de cette étude est donc de modifier les propriétés de barrières thermiques à base de zircone partiellement stabilisée par un procédé de refusion laser in situ couplant la projection thermique à la refusion par irradiation laser. Au final, le procédé de refusion in situ a permis d’architecturer différemment les dépôts barrières thermiques, et notamment : (i) de substituer à la microstructure lamellaire des dépôts projetés une microstructure dendritique colonnaire plus adaptée aux sollicitations thermomécaniques (augmentation de la résistance aux chocs isothermiques pouvant aller jusqu’au doublement du nombre de cycles) ; (ii) d’obtenir une architecture poreuse moins sensible au frittage, d’où une meilleure conservation des propriétés thermiques et mécaniques du dépôt lors de maintiens à hautes températures ; (iii) d’améliorer les propriétés d’isolation thermique de la barrière thermique, notamment en réduisant la conductivité thermique du dépôt d’environ 30 % ; (iv) de diminuer drastiquement sa perméabilité pour lutter contre l’oxydation et la corrosion ; (v) d’obtenir une phase tétragonale métastable plus stable lors de chocs thermiques ; (vi) de conserver les propriétés élastiques du dépôt (module de Young intrinsèque et apparent). Yttria partially stabilized zirconia thermal barrier coatings (TBCs) are nowadays widely used to protect components of aero gas turbines against degradation at high temperature, corrosion and oxidation. However, these coatings degrade in service conditions. Therefore, to manufacture TBC which present both low thermal conductivity and high life-time is a real challenge. Engineering the coating architecture by an adapted process is a prerequise to modify TBC characteristics. In this study, laser remelting was combined to thermal spraying in order to modify the TBC properties. The purpose was to adapt TBC characteristics during their manufacturing process, without adding one or even more additional steps. In situ laser treatment (i) changes structure from lamellar to dendritic columnar; (ii) generates a pore architecture less sensitive to sintering, inducing then a best conservation of the thermal and mechanical properties during thermal treatments at high temperatures; (iii) improves the thermal insulation properties of the TBC by decreasing its thermal conductivity of about 30 %; (iv) decreases its permeability in order to diminish oxidation and corrosion phenomena; (v) increases the resistance to isothermal shocks (with the possibility to double the number of cycles); (vi) conducts to a metastable tetragonal phase more stable during thermal shocks; (vii) without modifying elastic response of the deposit

    Quantifying thermal spray coating architecture by stereological protocols. Part II. Key points to be addressed

    No full text
    International audienceThis commentary aims at presenting, from a practical viewpoint, some key points to assess when implementing image analysis coupled to stereological protocols to quantify statistically the architecture of thermal spray coatings and their relevant features (pores, lamellae, and so forth.). This article is the second of a two-part commentary; the first one, published in Journal of Thermal Spray Technology, Vol 16 (No. 1), 2007, detailed those stereological protocols from a historical perspective

    Pore network architecture in plasma sprayed ceramic coatings

    No full text
    International audienceA combination of two techniques was implemented to quantify the morphology and the connectivity of the complex pore-crack network architecture of thermal sprayed coatings: image analysis coupled to stereological protocols permits to quantify the coating porous morphology, that is to say the porosity level (with a discrimination between globular pores and cracks), the orientation and the linear density of cracks; electrochemical impedance spectroscopy permits to quantify the pore connectivity (the open porosity level). These techniques were applied to characterize the pore structure of grey alumina (Al(2)O(3-)13TiO(2)) coatings and Yttria-Partially Stabilized Zirconia (Y-PSZ) Thermal Barrier Coatings (TBCs), respectively manufactured implementing air plasma spraying and hybrid plasma spraying (which combines plasma spraying and in situ laser remelting)

    Quantifying thermal spray coating architecture by stereological protocols : Part I. A historical perspective

    No full text
    This article presents, from a historical perspective, some stereological protocols of the first order. Such protocols can be implemented to quantify statistically the architecture of thermal spray coatings and their relevant features (pores, lamellas, etc.). A forthcoming Part II of this article will address some key points to implement, from a practical point of view, such protocols

    Quantification et simulation numérique des transferts de masse et de chaleur dans des couches poreuses épaisses de céramiques élaborées par projection thermique

    No full text
    Les mécanismes de formation de couches épaisses de céramiques élaborées par projection thermique ainsi que la relaxation des contraintes résiduelles conduisent à une architecture des couches composée d'une matrice céramique et d'un réseau de porosités micrométriques. Ce réseau influence les caractéristiques physicochimiques et thermiques des couches épaisses. Ainsi, il va agir comme des résistances thermiques locales et modifier la conductivité thermique apparente de la couche. D'autre part, des espèces pourront percoler au sein de la couche jusqu'à atteindre le substrat et réagir chimiquement, occasionnant des dommages. Deux méthodes complémentaires ont été développées pour quantifier ces caractéristiques. Le transfert de masse au sein de la couche est adressé par spectroscopie d'impédance pour la quantification de sa connectivité et le transfert de chaleur par modélisation numérique bidimensionnelle

    Améliorations de revêtements barrières thermiques par un procédé de refusion laser in situ utilisant un laser à diodes

    No full text
    Les barrières thermiques, réalisées par projection thermique à la torche à plasma d'arc soufflé et constituées d'une couche céramique de zircone stabilisée notamment à l'yttrine (ZrO2-Y2O3), sont largement utilisées pour protéger les composants des turbines à gaz aéronautiques des dégradations à haute température, de la corrosion et de l'oxydation. Toutefois, ces revêtements se dégradent lors des cycles de fonctionnement.Aussi, il existe une véritable difficulté technologique pour élaborer à un coût modéré des barrières thermiques présentant à la fois de faibles caractéristiques de conductivité et une bonne tenue en service. L'originalité de cette étude est donc de modifier les propriétés de barrières thermiques à base de zircone partiellement stabilisée par un procédé de refusion laser in situ couplant la projection thermique à la refusion par irradiation laser.Au final, le procédé de refusion in situ a permis d'architecturer différemment les dépôts barrières thermiques, et notamment : (i) de substituer à la microstructure lamellaire des dépôts projetés une microstructure dendritique colonnaire plus adaptée aux sollicitations thermomécaniques (augmentation de la résistance aux chocs isothermiques pouvant aller jusqu'au doublement du nombre de cycles) ; (ii) d'obtenir une architecture poreuse moins sensible au frittage, d'où une meilleure conservation des propriétés thermiques et mécaniques du dépôt lors de maintiens à hautes températures ; (iii) d'améliorer les propriétés d'isolation thermique de la barrière thermique, notamment en réduisant la conductivité thermique du dépôt d'environ 30 % ; (iv) de diminuer drastiquement sa perméabilité pour lutter contre l'oxydation et la corrosion ; (v) d'obtenir une phase tétragonale métastable plus stable lors de chocs thermiques ; (vi) de conserver les propriétés élastiques du dépôt (module de Young intrinsèque et apparent).Yttria partially stabilized zirconia thermal barrier coatings (TBCs) are nowadays widely used to protect components of aero gas turbines against degradation at high temperature, corrosion and oxidation. However, these coatings degrade in service conditions.Therefore, to manufacture TBC which present both low thermal conductivity and high life-time is a real challenge. Engineering the coating architecture by an adapted process is a prerequise to modify TBC characteristics. In this study, laser remelting was combined to thermal spraying in order to modify the TBC properties. The purpose was to adapt TBC characteristics during their manufacturing process, without adding one or even more additional steps.In situ laser treatment (i) changes structure from lamellar to dendritic columnar; (ii) generates a pore architecture less sensitive to sintering, inducing then a best conservation of the thermal and mechanical properties during thermal treatments at high temperatures; (iii) improves the thermal insulation properties of the TBC by decreasing its thermal conductivity of about 30 %; (iv) decreases its permeability in order to diminish oxidation and corrosion phenomena; (v) increases the resistance to isothermal shocks (with the possibility to double the number of cycles); (vi) conducts to a metastable tetragonal phase more stable during thermal shocks; (vii) without modifying elastic response of the deposit.STRASBOURG-Sc. et Techniques (674822102) / SudocSudocFranceF
    • …
    corecore